Hybrid approach for structural modeling of biological systems from X-ray free electron laser diffraction patterns.
نویسندگان
چکیده
We present a new hybrid approach for structural modeling using X-ray free electron laser (XFEL) diffraction patterns from non-crystalline biological samples. Reconstruction of a 3D structure requires a large number of diffraction patterns; however, in the current XFEL experiments with biological systems, the analysis often relies on a small number of 2D diffraction patterns. In this study, we explore the strategies to identify plausible 3D structural models by combining the 2D analysis of such diffraction patterns with computational modeling (normal mode analysis or molecular dynamics simulations). As the first step toward such hybrid modeling, we established a protocol to assess the agreement between the model structure and the target XFEL diffraction pattern and showed that XFEL data can be used to study the conformational transitions of biological molecules. We tested the proposed algorithms using data of three biomolecular complexes of different sizes (elongation factor 2, CCM virus, and ribosome) and examined the experimental conditions that are required to perform such studies, in particular the XFEL beam intensity requirements. The results indicate that the current beam intensity is close to a strength that enables us to study conformational transitions of macromolecules, such as ribosomes. The proposed algorithm can be combined with molecular mechanics approaches, such as molecular dynamics simulations and normal mode analysis, to generate a large number of candidate structures to perform hybrid structural modeling.
منابع مشابه
Introducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues
Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...
متن کاملCoherent convergent-beam time-resolved X-ray diffraction.
The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved ...
متن کاملData processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA...
متن کاملPhotoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses
We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-de...
متن کاملPotential impact of an X-ray free electron laser on structural biology
Recent developments in X-ray source technology provide new opportunities for both the rapid imaging of macromolecules in three dimensions, and the observation of short-lived structural intermediates in light-sensitive macromolecules. Pioneering time-resolved X-ray diffraction studies on macromolecules have laid the foundations for similar studies on increasingly complex macromolecular systems a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of structural biology
دوره 194 3 شماره
صفحات -
تاریخ انتشار 2016